Analysis of global nutrient gaps and their potential to be closed through redistribution and increased supply

Author:

Fletcher Andrew J.,Lozano Raquel,McNabb Warren C.

Abstract

Global food systems are crucial for sustaining life on Earth. Although estimates suggest that the current production system can provide enough food and nutrients for everyone, equitable distribution remains challenging. Understanding global nutrient distribution is vital for addressing disparities and creating effective solutions for the present and future. This study analyzes global nutrient supply changes to address inadequacies in certain populations using the existing DELTA Model®, which uses aggregates of global food production to estimate nutrient adequacy. By examining the 2020 global food commodity and nutrient distribution, we project future food production in 2050 needs to ensure global adequate nutrition. Our findings reveal that while some nutrients appear to be adequately supplied on a global scale, many countries face national insufficiencies (% supply below the population reference intake) in essential vitamins and minerals, such as vitamins A, B12, B2, potassium, and iron. Closing these gaps will require significant increases in nutrient supply. For example, despite global protein supply surpassing basic needs for the 2050 population, significant shortages persist in many countries due to distribution variations. A 1% increase in global protein supply, specifically targeting countries with insufficiencies, could address the observed 2020 gaps. However, without consumption pattern changes, a 26% increase in global protein production is required by 2050 due to population growth. In this study, a methodology was developed, applying multi-decade linear convergence to sufficiency values at the country level. This approach facilitates a more realistic assessment of future needs within global food system models, such as the DELTA Model®, transitioning from idealized production scenarios to realistic projections. In summary, our study emphasizes understanding global nutrient distribution and adjusting minimum global nutrient supply targets to tackle country-level inequality. Incorporating these insights into global food balance models can improve projections and guide policy decisions for sustainable, healthy diets worldwide.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3