The Effect of Microwave Baking Conditions on the Quality of Biscuits and the Control of Thermal Processing Hazards in the Maillard Reaction

Author:

Dong Lu,Qiu Caiyi,Wei Fan,Yu Zhenting,Zhang Yan,Wang Shuo

Abstract

To reduce thermal processing hazards (TPHs), microwave baking has been extensively used in food thermal processing. In this study, the influence of microwave power and microwave time on the formation of TPHs and their precursors was explored in microwave-baked biscuits. The results indicated that the content of acrylamide, 5-hydroxymethylfurfural, methylglyoxal, and 3-deoxyglucosone increased linearly with the extension of microwave time (2, 2.5, and 3 min) and microwave power (440, 480, and 520 W). There was a significant correlation between the four TPHs. 3-Deoxyglucosone may directly or indirectly participate in the formation of the other three TPHs. The relationship between TPH levels with some heat-induced sensory characteristics was analyzed. The correlation between the sensory characteristics and the content of TPHs is L* > a* > hardness > Water activity (AW). The correlation coefficients between L* value and the four TPHs are −0.950, −0.891, −0.803, and −0.985. Furthermore, the content of TPHs produced by traditional baking and microwave baking under the same texture level was compared. Compared with traditional baking (190°C, 7 min), microwave baking at 440 W for 3 min successfully decrease methylglyoxal, 3-Deoxyglucosone, acrylamide, and 5-hydroxymethylfurfural content by 60.75, 30.19, 30.87, and 61.28%, respectively. Traditionally baked biscuits, which had a more obvious color, as characterized by lower L* value, larger a* and b* values, are more susceptible to the formation of TPHs. Therefore, microwave baking can reduce the generation of TPHs.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3