Machine learning prediction of dual and dose-response effects of flavone carbon and oxygen glycosides on acrylamide formation

Author:

Wang Laizhao,Zhang Fan,Wang Jun,Wang Qiao,Chen Xinyu,Cheng Jun,Zhang Yu

Abstract

IntroductionThe extensive occurrence of acrylamide in heat processing foods has continuously raised a potential health risk for the public in the recent 20 years. Machine learning emerging as a robust computational tool has been highlighted for predicting the generation and control of processing contaminants.MethodsWe used the least squares support vector regression (LS-SVR) as a machine learning approach to investigate the effects of flavone carbon and oxygen glycosides on acrylamide formation under a low moisture condition. Acrylamide was prepared through oven heating via a potato-based model with equimolar doses of asparagine and reducing sugars.ResultsBoth inhibition and promotion effects were observed when the addition levels of flavonoids ranged 1–10,000 μmol/L. The formation of acrylamide could be effectively mitigated (37.6%–55.7%) when each kind of flavone carbon or oxygen glycoside (100 μmol/L) was added. The correlations between acrylamide content and trolox-equivalent antioxidant capacity (TEAC) within inhibitory range (R2 = 0.85) had an advantage over that within promotion range (R2 = 0.87) through multiple linear regression.DiscussionTaking ΔTEAC as a variable, a LS-SVR model was optimized as a predictive tool to estimate acrylamide content (R2inhibition = 0.87 and R2promotion = 0.91), which is pertinent for predicting the formation and elimination of acrylamide in the presence of exogenous antioxidants including flavonoids.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on physical properties and acrylamide formation in seaweed bread;Frontiers in Food Science and Technology;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3