Optimization of the Artemisia Polysaccharide Fermentation Process by Aspergillus niger

Author:

Tao Ali,Feng Xuehua,Sheng Yajing,Song Zurong

Abstract

In order to investigate the fermentation process of Artemisia polysaccharides, this paper showcases an investigation into the effects of fermentation time, fermentation temperature, strain inoculum, Artemisia annua addition, and shaker speed on the polysaccharides production of Artemisia annua. The yield of Artemisia polysaccharides content was determined based on the optimization of single-factor test, and then a response surface test was conducted with temperature, inoculum, and time as response variables and the yield of Artemisia polysaccharides as response values. The fermentation process was then optimized and the antioxidant activity of Artemisia polysaccharides was monitored using DPPH, ABTS+, OH, and total reducing power. The optimum fermentation process was determined by the test to be 5% inoculum of Aspergillus niger, temperature 36°C, time 2 d, shaker speed 180 r/min, and 4% addition of Artemisia annua, and the extraction of Artemisia polysaccharides was up to 17.04% by this condition of fermentation. The polysaccharides from Artemisia annua fermented by Aspergillus Niger had scavenging effects on DPPH, ABTS, and OH free radicals.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3