A high-throughput lipidomics and transcriptomic approach reveals novel compounds from sugarcane linked with promising therapeutic potential against COVID-19

Author:

Rao Muhammad Junaid,Tahir ul Qamar Muhammad,Wang Dongxin,Ali Qurban,Ma Li,Han Shijian,Duan Mingzheng,Hu Lihua,Wang Lingqiang

Abstract

Sugarcane (Saccharum ssp., Poaceae) provides enormous metabolites such as sugars, lipid, and other dietary metabolites to humans. Among them, lipids are important metabolites that perform various functions and have promising pharmacological value. However, in sugarcane, few studies are focusing on lipidomics and few lipid compounds were reported, and their pharmacological values are not explored yet. The transcriptomic and widely targeted lipidomics approach quantified 134 lipid compounds from the rind of six sugarcane genotypes. These lipid compounds include 57 fatty acids, 30 lysophosphatidylcholines, 23 glycerol esters, 21 lysophosphatidylethanolamines, 2 phosphatidylcholines, and 1 sphingolipid. Among them, 119 compounds were first time reported in sugarcane rind. Seventeen lipids compounds including 12 fatty acids, 2 glycerol lipids, LysoPC 16:0, LysoPE 16:0, and choline alfoscerate were abundantly found in the rind of sugarcane genotypes. From metabolic and transcriptomic results, we have developed a comprehensive lipid metabolic pathway and highlighted key genes that are differentially expressed in sugarcane. Several genes associated with α-linolenic acid and linoleic acid biosynthesis pathways were highly expressed in the rind of the ROC22 genotype. ROC22 has a high level of α-linolenic acid (an essential fatty acid) followed by ROC16. Moreover, we have explored pharmacological values of lipid compounds and found that the 2-linoleoylglycerol and gingerglycolipid C have strong binding interactions with 3CLpro of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and these compounds can be utilized against SARS-CoV-2 as therapeutic agents. The transcriptome, metabolome, and bioinformatics analysis suggests that the sugarcane cultivars have a diversity of lipid compounds having promising therapeutic potential, and exploring the lipid metabolism will help to know more compounds that have promising cosmetic and pharmacological value.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3