Identification of COM Controller of a Human in Stance Based on Motion Measurement and Phase-Space Analysis

Author:

Sugihara Tomomichi,Kaneta Daishi,Murai Nobuyuki

Abstract

This article proposes a process to identify the standing stabilizer, namely, the controller in humans to keep upright posture stable against perturbations. We model the controller as a piecewise-linear feedback system, where the state of the center of mass (COM) is regulated by coordinating the whole body so as to locate the zero-moment point (ZMP) at the desired position. This was developed for humanoid robots and is possibly able to elaborate the fundamental control scheme used by humans to stabilize themselves. Difficulties lie on how to collect motion trajectories in a wide area of the state space for reliable identification and how to identify the piecewise-affine dynamical system. For the former problem, a motion measurement protocol is devised based on the theoretical phase portrait of the system. Regarding the latter problem, some clustering techniques including K-means method and EM (Expectation-and-Maximization) algorithm were examined. We found that a modified K-means method produced the most accurate result in this study. The method was applied to the identification of a lateral standing controller of a human subject. The result of the identification quantitatively supported a hypothesis that the COM-ZMP regulator reasonably models the human’s controller when deviations of the angular momentum about the COM are limited.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference40 articles.

1. Multiple Balance Strategies from One Optimization Criterion;Atkeson,2007

2. Real-Time Implementation of Physically Consistent Identification of Human Body Segments;Ayusawa,2011

3. Set Membership Identification of Piecewise Affine Models;Bemporad,2003

4. Maximum Likelihood from Incomplete Data via theEMAlgorithm;Dempster;J. R. Stat. Soc. Ser. B (Methodological),1977

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3