Identification of a Step-And-Brake Controller of a Human Based on Prediction of Capturability

Author:

Kojima Miharu,Sugihara Tomomichi

Abstract

An explicit mathematical form of a human’s step-and-brake controller is identified through motion measurement of the human subject. The controller was originally designed for biped robots based on the reduced-order dynamics and the model predictive control scheme with the terminal capturability condition, and is compatible with both stand-still and stepping motions. The minimal number of parameters facilitates the identification from measured trajectories of the center of mass and the zero-moment point of the human subject. In spite of the minimality, the result only suited the human’s behaviors well with slight modifications of the model by taking direction-dependency of the natural falling speed and the inertial torque about the center of mass into account. Furthermore, the parameters are successfully identified even from the first half of motion sequence, which means that the proposed method is available in designing on-the-fly systems to evaluate balancing abilities of humans and to assist balances of humans in walking.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3