A bioinspired stiffness tunable sucker for passive adaptation and firm attachment to angular substrates

Author:

Goshtasbi Arman,Sadeghi Ali

Abstract

The ability to adapt and conform to angular and uneven surfaces improves the suction cup’s performance in grasping and manipulation. However, in most cases, the adaptation costs lack of required stiffness for manipulation after surface attachment; thus, the ideal scenario is to have compliance during adaptation and stiffness after attachment to the surface. Inspired by the capability of stiffness regulation in octopus suction cup, this article presents a suction cup that adapts to steep angular surfaces due to compliance and has high stiffness after attachment. In this design, the stiffness after attachment is provided by using granular jamming as vacuum driven stiffness modulation. Thus, the design is composed of a conventional active suction pad connected to a granular stalk, emulating a hinge behavior during adaptation and creating high stiffness by jamming granular particles driven by the same vacuum as the suction pad. During the experiment, the suction cup can adapt to angles up to 85° with a force lower than 0.5 N. We also investigated the effect of granular stalk’s length on the adaptation and how this design performs compared to passive adaptation without stiffness modulation.

Funder

University of Twente

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference29 articles.

1. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi;Baik;Nature,2017

2. Layer-jamming suction grippers with variable stiffness;Bamotra;J. Mech. Robotics,2019

3. Doctor blade;Berni,2004

4. Universal robotic gripper based on the jamming of granular material;Brown;Proc. Natl. Acad. Sci. U. S. A.,2010

5. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media;Cheng,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3