No-code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context

Author:

Halim Jayanto,Eichler Paul,Krusche Sebastian,Bdiwi Mohamad,Ihlenfeldt Steffen

Abstract

Industrial robots and cobots are widely deployed in most industrial sectors. However, robotic programming still needs a lot of time and effort in small batch sizes, and it demands specific expertise and special training, especially when various robotic platforms are required. Actual low-code or no-code robotic programming solutions are exorbitant and meager. This work proposes a novel approach for no-code robotic programming for end-users with adequate or no expertise in industrial robotic. The proposed method ensures intuitive and fast robotic programming by utilizing a finite state machine with three layers of natural interactions based on hand gesture, finger gesture, and voice recognition. The implemented system combines intelligent computer vision and voice control capabilities. Using a vision system, the human could transfer spatial information of a 3D point, lines, and trajectories using hand and finger gestures. The voice recognition system will assist the user in parametrizing robot parameters and interacting with the robot’s state machine. Furthermore, the proposed method will be validated and compared with state-of-the-art “Hand-Guiding” cobot devices within real-world experiments. The results obtained are auspicious, and indicate the capability of this novel approach for real-world deployment in an industrial context.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference90 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative Robotics: A Survey From Literature and Practitioners Perspectives;Journal of Intelligent & Robotic Systems;2024-08-06

2. A No-Code Approach for Intuitive Robot Programming for Agile Welding Application;2024 IEEE International Symposium on Robotic and Sensors Environments (ROSE);2024-06-20

3. Offline robot programming assisted by task demonstration: an AutomationML interoperable solution for glass adhesive application and welding;International Journal of Computer Integrated Manufacturing;2024-05-23

4. Alchemist: LLM-Aided End-User Development of Robot Applications;Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

5. Customer Service with AI-Powered Human-Robot Collaboration (HRC): A Literature Review;Procedia Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3