Improving Autonomous Robotic Navigation Using Imitation Learning

Author:

Cèsar-Tondreau Brian,Warnell Garrett,Stump Ethan,Kochersberger Kevin,Waytowich Nicholas R.

Abstract

Autonomous navigation to a specified waypoint is traditionally accomplished with a layered stack of global path planning and local motion planning modules that generate feasible and obstacle-free trajectories. While these modules can be modified to meet task-specific constraints and user preferences, current modification procedures require substantial effort on the part of an expert roboticist with a great deal of technical training. In this paper, we simplify this process by inserting a Machine Learning module between the global path planning and local motion planning modules of an off-the shelf navigation stack. This model can be trained with human demonstrations of the preferred navigation behavior, using a training procedure based on Behavioral Cloning, allowing for an intuitive modification of the navigation policy by non-technical users to suit task-specific constraints. We find that our approach can successfully adapt a robot’s navigation behavior to become more like that of a demonstrator. Moreover, for a fixed amount of demonstration data, we find that the proposed technique compares favorably to recent baselines with respect to both navigation success rate and trajectory similarity to the demonstrator.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference27 articles.

1. Apprenticeship Learning via Inverse Reinforcement Learning;Abbeel,2004

2. A Survey of Robot Learning from Demonstration;Argall;Robotics autonomous Syst.,2009

3. Combining Optimal Control and Learning for Visual Navigation in Novel Environments;Bansal,2019

4. End to End Learning for Self-Driving Cars;Bojarski,2016

5. Rethinking Atrous Convolution for Semantic Image Segmentation;Chen,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3