Author:
van Dijk Wietse,Baltrusch Saskia J.,Dessers Ezra,de Looze Michiel P.
Abstract
Collaborative robots (in short: cobots) have the potential to assist workers with physically or cognitive demanding tasks. However, it is crucial to recognize that such assistance can have both positive and negative effects on job quality. A key aspect of human-robot collaboration is the interdependence between human and robotic tasks. This interdependence influences the autonomy of the operator and can impact the work pace, potentially leading to a situation where the human’s work pace becomes reliant on that of the robot. Given that autonomy and work pace are essential determinants of job quality, design decisions concerning these factors can greatly influence the overall success of a robot implementation. The impact of autonomy and work pace was systematically examined through an experimental study conducted in an industrial assembly task. 20 participants engaged in collaborative work with a robot under three conditions: human lead (HL), fast-paced robot lead (FRL), and slow-paced robot lead (SRL). Perceived workload was used as a proxy for job quality. To assess the perceived workload associated with each condition was assessed with the NASA Task Load Index (TLX). Specifically, the study aimed to evaluate the role of human autonomy by comparing the perceived workload between HL and FRL conditions, as well as the influence of robot pace by comparing SRL and FRL conditions. The findings revealed a significant correlation between a higher level of human autonomy and a lower perceived workload. Furthermore, a decrease in robot pace was observed to result in a reduction of two specific factors measuring perceived workload, namely cognitive and temporal demand. These results suggest that interventions aimed at increasing human autonomy and appropriately adjusting the robot’s work pace can serve as effective measures for optimizing the perceived workload in collaborative scenarios.
Funder
Fonds Wetenschappelijk Onderzoek
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
Subject
Artificial Intelligence,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献