Ergonomic human-robot collaboration in industry: A review

Author:

Lorenzini Marta,Lagomarsino Marta,Fortini Luca,Gholami Soheil,Ajoudani Arash

Abstract

In the current industrial context, the importance of assessing and improving workers’ health conditions is widely recognised. Both physical and psycho-social factors contribute to jeopardising the underlying comfort and well-being, boosting the occurrence of diseases and injuries, and affecting their quality of life. Human-robot interaction and collaboration frameworks stand out among the possible solutions to prevent and mitigate workplace risk factors. The increasingly advanced control strategies and planning schemes featured by collaborative robots have the potential to foster fruitful and efficient coordination during the execution of hybrid tasks, by meeting their human counterparts’ needs and limits. To this end, a thorough and comprehensive evaluation of an individual’s ergonomics, i.e. direct effect of workload on the human psycho-physical state, must be taken into account. In this review article, we provide an overview of the existing ergonomics assessment tools as well as the available monitoring technologies to drive and adapt a collaborative robot’s behaviour. Preliminary attempts of ergonomic human-robot collaboration frameworks are presented next, discussing state-of-the-art limitations and challenges. Future trends and promising themes are finally highlighted, aiming to promote safety, health, and equality in worldwide workplaces.

Funder

European Research Council

Horizon 2020

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference254 articles.

1. TLVs: Threshold limit values for chemical substances and physical substances in the workroom environment with intended changes for 1981,1981

2. Using eye movement activity as a correlate of cognitive workload;Ahlstrom;Int. J. Industrial Ergonomics,2006

3. Person-specific behavioural features for automatic stress detection;Aigrain,2015

4. Mental stress quantification using EEG signals;Al-Shargie,2016

5. Observational methods for assessing ergonomic risks for work-related musculoskeletal disorders. a scoping review;Andreas;Rev. Cienc. salud,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3