Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities

Author:

Baptista Joel1ORCID,Castro Afonso1ORCID,Gomes Manuel1ORCID,Amaral Pedro2ORCID,Santos Vítor1ORCID,Silva Filipe2ORCID,Oliveira Miguel1ORCID

Affiliation:

1. Department of Mechanical Engineering (DEM), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal

2. Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

This paper presents a collaborative manufacturing cell implemented in a laboratory setting, focusing on developing learning-based interaction abilities to enhance versatility and ease of use. The key components of the system include 3D real-time volumetric monitoring for safety, visual recognition of hand gestures for human-to-robot communication, classification of physical-contact-based interaction primitives during handover operations, and detection of hand–object interactions to anticipate human intentions. Due to the nature and complexity of perception, deep-learning-based techniques were used to enhance robustness and adaptability. The main components are integrated in a system containing multiple functionalities, coordinated through a dedicated state machine. This ensures appropriate actions and reactions based on events, enabling the execution of specific modules to complete a given multi-step task. An ROS-based architecture supports the software infrastructure among sensor interfacing, data processing, and robot and gripper controllers nodes. The result is demonstrated by a functional use case that involves multiple tasks and behaviors, paving the way for the deployment of more advanced collaborative cells in manufacturing contexts.

Funder

Project Augmented Humanity

Competitiveness and Internationalization Operational Program

Lisbon Regional Operational Program

European Regional Development Fund

Foundation for Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3