Activity, Plan, and Goal Recognition: A Review

Author:

Van-Horenbeke Franz A.,Peer Angelika

Abstract

Recognizing the actions, plans, and goals of a person in an unconstrained environment is a key feature that future robotic systems will need in order to achieve a natural human-machine interaction. Indeed, we humans are constantly understanding and predicting the actions and goals of others, which allows us to interact in intuitive and safe ways. While action and plan recognition are tasks that humans perform naturally and with little effort, they are still an unresolved problem from the point of view of artificial intelligence. The immense variety of possible actions and plans that may be encountered in an unconstrained environment makes current approaches be far from human-like performance. In addition, while very different types of algorithms have been proposed to tackle the problem of activity, plan, and goal (intention) recognition, these tend to focus in only one part of the problem (e.g., action recognition), and techniques that address the problem as a whole have been not so thoroughly explored. This review is meant to provide a general view of the problem of activity, plan, and goal recognition as a whole. It presents a description of the problem, both from the human perspective and from the computational perspective, and proposes a classification of the main types of approaches that have been proposed to address it (logic-based, classical machine learning, deep learning, and brain-inspired), together with a description and comparison of the classes. This general view of the problem can help on the identification of research gaps, and may also provide inspiration for the development of new approaches that address the problem in a unified way.

Funder

Libera Università di Bolzano

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference116 articles.

1. Action recognition for human robot interaction in industrial applications,;Akkaladevi,2015

2. Executive function is associated with social competence in preschool-aged children born preterm or full term;Alduncin;Early Hum. Dev,2014

3. Dynamic contextualization and comparison as the basis of biologically inspired action understanding;Alkurdi;Paladyn J. Behav. Robot,2018

4. Goal recognition in latent space,;Amado

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3