Dynamic contextualization and comparison as the basis of biologically inspired action understanding

Author:

Alkurdi Laith,Busch Christian,Peer Angelika

Abstract

Abstract People exhibit a robust ability to understand the actions of others around them. In this work, we identify two biologically inspired mechanisms that we hypothesize to be central in the function of action understanding. The first module is a contextual predictor of the observed action, given the goal-directed movement towards objects, and the actions that are allowed to be performed on the object. The second module is a kinematic trajectory parser that validates the previous prediction against a set of learned templates.We model both mechanisms and link them to the environment using the cognitive framework of Dynamic Field Theory and present our first steps into integrating the aforementioned modules into a consistent framework for the purpose of action understanding. The two modules and the combined architecture as awhole are experimentally validated using a recording of an actor performing a series of intentional actions testing the ability of the architecture to understand context and parse actions dynamically. Our initial qualitative results show that action understanding benefits from the combination of the two modules, while any module alone would be insufficient to resolve ambiguity in the perceived actions.

Publisher

Walter de Gruyter GmbH

Subject

Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction

Reference108 articles.

1. Integrating verbal and nonverbal communication in a dynamic neural field architecture for human - robot interaction in Neuro robotics;Bicho;Frontiers,2010

2. Neurophysiological mechanisms underlying the understanding and imitation of action;Rizzolatti;Nature Reviews Neuroscience,2001

3. Analyse cinématique de la marche Rendus des Séances de lAcadémie des;Marey;Sciences,1884

4. Vision computational investigation into the human representation and processing of visual information San Company;Marr,1982

5. Biological and body motion perception in Handbook of Perceptual University;Giese;Organization,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3