Dynamic Turning of a Soft Quadruped Robot by Changing Phase Difference

Author:

Tanaka Hiroaki,Chen Tsung-Yuan,Hosoda Koh

Abstract

Dynamic locomotion of a quadruped robot emerges from interaction between the robot body and the terrain. When the robot has a soft body, dynamic locomotion can be realized using a simple controller. This study investigates dynamic turning of a soft quadruped robot by changing the phase difference among the legs of the robot. We develop a soft quadruped robot driven by McKibben pneumatic artificial muscles. The phase difference between the hind and fore legs is fixed whereas that between the left and right legs is changed to enable the robot to turn dynamically. Since the robot legs are soft, the contact pattern between the legs and the terrain can be varied adaptively by simply changing the phase difference. Experimental results demonstrate that changes in the phase difference lead to changes in the contact time of the hind legs, and as a result, the soft robot can turn dynamically.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decentralized control mechanism for limb steering in quadruped robot walking;Advanced Robotics;2024-07-18

2. Analysis of electric-free pneumatic circuits based on logic circuit and its application;Nonlinear Theory and Its Applications, IEICE;2024

3. Automated Gait Generation for Walking, Soft Robotic Quadrupeds;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. Actuation Mechanisms and Applications for Soft Robots: A Comprehensive Review;Applied Sciences;2023-08-15

5. Swinging mass for energy-efficient quadrupedal locomotion;Advanced Robotics;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3