Single amino acid change in tomato brown rugose fruit virus breaks virus-specific resistance in new resistant tomato cultivar

Author:

Zisi Zafeiro,Ghijselings Lucas,Vogel Elise,Vos Christine,Matthijnssens Jelle

Abstract

IntroductionTomato cultivation across the world is severely affected by emerging plant viruses. An effective method for protection of commercial crops against viral threats is the use of cultivars harboring resistance genes. Tomato brown rugose fruit virus (ToBRFV), a recently emerged tobamovirus, is able to overcome the dominant Tm-22 resistance that is present in the majority of commercial tomato cultivars. In an effort to alleviate the severe consequences of ToBRFV on tomato production, tomato breeding companies are developing new cultivars with varying levels of resistance against ToBRFV.MethodsIn the present study, cultivars with a new resistant phenotype against ToBRFV were screened against a wild-type isolate of ToBRFV, and subsequently, their performance under commercial greenhouse conditions was monitored. Following the identification of ToBRFV symptoms in a commercial greenhouse—where both new resistant and susceptible cultivars were interplanted—these cultivars were more closely examined.ResultsThe presence of ToBRFV was molecularly confirmed on both cultivar types suggesting that the new resistance had been broken. High-throughput sequencing (HTS) was used to study the complete genomes of viral isolates present in the two cultivar types. The analysis revealed a single amino acid change at position 82 of the movement protein of ToBRFV in the isolate present in the new resistant cultivar compared with the isolate identified in the susceptible cultivar.DiscussionA screening bioassay, that was performed to compare the infectivity of the two ToBRFV isolates, confirmed that only the isolate with this specific amino acid change could successfully infect the resistant cultivar, overcoming the new resistance against ToBRFV.

Funder

Agentschap Innoveren en Ondernemen

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3