Physiological effects of combined NaCl and NaHCO3 stress on the seedlings of two maple species

Author:

Xu Bo,Cao Lina,Zhang Zhenxing,Li Xinyu,Zhao Xiangyu,Wang Xinyue,Wang Yining,Wu Bingchen,Zhou Weihua,Lin Chenlu,Gao Yufu,Rong Liping

Abstract

Salt stress impacts growth and physiological processes in plants, and some plants exposed to salt stress will produce physiological mechanisms to adapt to the new environment. However, the effects of combined NaCl and NaHCO3 stress on the seedlings of Acer species are understudied. In this study, we designed an experiment to measure physiological characteristics by establishing a range of NaCl and NaHCO3 concentrations (0, 25, 50, 75, and 100 mmol L-1) to estimate the compound salt tolerance of Acer ginnala and Acer palmatum. When the concentrations of NaCl and NaHCO3 were 25 mmol L-1, the leaf water content, relative conductivity, malondialdehyde (MDA) content, proline content, soluble sugar content, and chlorophyll did not change (p > 0.05) in two maple seedlings. At concentrations greater than 50 mmol L-1, the relative conductivity and MDA content increased, proline and soluble sugars accumulated, and the potential activity of PS II (Fv/Fo), potential photochemical efficiency of PS II (Fv/Fm), PS II actual photochemical efficiency (Yield), and photosynthetic electron transfer efficiency (ETR) decreased (p < 0.05). The superoxide dismutase (SOD) and catalase (CAT) activities showed the same trend of first increasing and then decreasing (p < 0.05). The peroxidase (POD) activity increased only when concentrations of NaCl and NaHCO3 were 100 mmol L-1, while there was no statistical difference between the other treatments and the control. Therefore, the two maple seedlings adjusted their osmotic balance and alleviated oxidative stress by accumulating proline, soluble sugars and increasing CAT and SOD activities. Further analysis showed that both species are salt tolerant and the salt tolerance of Acer ginnala is better than that of Acer palmatum.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3