Transcriptomics and Metabolomics Analysis Revealed the Ability of Microbacterium ginsengiterrae S4 to Enhance the Saline-Alkali Tolerance of Rice (Oryza sativa L.) Seedlings

Author:

Ji Hongfei1,Qi Yuxi1,Zhang Xiu1,Yang Guoping1

Affiliation:

1. Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China

Abstract

Soil salinization is a major factor that reduces crop yields. There are some plant growth-promoting rhizobacteria (PGPR) that can stimulate and enhance the salt tolerance of plants near their roots in saline–alkali environments. Currently, there is relatively little research on PGPR in rice saline–alkali tolerance. In the early stages of this study, a strain of Microbacterium ginsengiterrae S4 was screened that could enhance the growth of rice in a laboratory-simulated saline–alkali environment (100 mM NaCl, pH 8.5). The experiment investigated the effects of S4 bacteria on the growth, antioxidant capacity, and osmotic regulation of rice seedlings under saline–alkali stress. RNA-Seq technology was used for transcriptome sequencing and UPLC-MS/MS for metabolite detection. Research has shown that S4 bacteria affect the growth of rice seedlings under saline–alkali stress through the following aspects. First, S4 bacteria increase the antioxidant enzyme activity (SOD, POD, and CAT) of rice seedlings under saline–alkali stress, reduce the content of MDA, and balance the content of osmotic regulatory substances (soluble sugar, soluble protein, and proline). Second, under saline–alkali stress, treatment with S4 bacteria caused changes in differentially expressed genes (DEGs) (7 upregulated, 15 downregulated) and differentially metabolized metabolites (101 upregulated; 26 downregulated) in rice seedlings. The DEGs are mainly involved in UDP-glucose transmembrane transporter activity, while the differentially metabolized metabolites are mainly involved in the ABC transporters pathway. Finally, key genes and metabolites were identified through correlation analysis of transcriptomes and metabolomes, among which OsSTAR2 negatively regulates L-histidine, leading to an increase in L-histidine content. Furthermore, through gene correlation and metabolite correlation analysis, it was found that OsWRKY76 regulates the expression of OsSTAR2 and that L-histidine also causes an increase in 2-methyl-4-pentenoic acid content. Based on the above analysis, the addition of S4 bacteria can significantly improve the tolerance of rice in saline–alkali environments, which has a great application value for planting rice in these environments.

Funder

Ningxia Key Research and Development Plan

National Natural Science Foundation of China

Science and Technology Leading Talents of Ningxia Hui Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3