Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging

Author:

Li Xunlan,Wei Zhaoxin,Peng Fangfang,Liu Jianfei,Han Guohui

Abstract

Being rich in anthocyanin is one of the most important physiological traits of mulberry fruits. Efficient and non-destructive detection of anthocyanin content and distribution in fruits is important for the breeding, cultivation, harvesting and selling of them. This study aims at building a fast, non-destructive, and high-precision method for detecting and visualizing anthocyanin content of mulberry fruit by using hyperspectral imaging. Visible near-infrared hyperspectral images of the fruits of two varieties at three maturity stages are collected. Successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS) and stacked auto-encoder (SAE) are used to reduce the dimension of high-dimensional hyperspectral data. The least squares-support vector machine and extreme learning machine (ELM) are used to build models for predicting the anthocyanin content of mulberry fruit. And genetic algorithm (GA) is used to optimize the major parameters of models. The results show that the higher the anthocyanin content is, the lower the spectral reflectance is. 15, 7 and 13 characteristic variables are extracted by applying CARS, SPA and SAE respectively. The model based on SAE-GA-ELM achieved the best performance with R2 of 0.97 and the RMSE of 0.22 mg/g in both the training set and testing set, and it is applied to retrieve the distribution of anthocyanin content in mulberry fruits. By applying SAE-GA-ELM model to each pixel of the mulberry fruit images, distribution maps are created to visualize the changes in anthocyanin content of mulberry fruits at three maturity stages. The overall results indicate that hyperspectral imaging, in combination with SAE-GA-ELM, can help achieve rapid, non-destructive and high-precision detection and visualization of anthocyanin content in mulberry fruits.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3