Non-destructive prediction of anthocyanin concentration in whole eggplant peel using hyperspectral imaging

Author:

Ma Zhiling1,Wei Changbin1,Wang Wenhui1,Lin Wenqiu1,Nie Heng1,Duan Zhe12,Liu Ke13,Xiao Xi Ou1

Affiliation:

1. South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China

2. Yunnan Agricultural University, Puer, Yunnan, China

3. South China Agricultural University, Guangzhou, Guangdong, China

Abstract

Accurately detecting the anthocyanin content in eggplant peel is essential for effective eggplant breeding. The present study aims to present a method that combines hyperspectral imaging with advanced computational analysis to rapidly, non-destructively, and precisely measure anthocyanin content in eggplant fruit. For this purpose, hyperspectral images of the fruits of 20 varieties with diverse colors were collected, and the content of the anthocyanin were detected using high performance liquid chromatography (HPLC) methods. In order to minimize background noise in the hyperspectral images, five preprocessing algorithms were utilized on average reflectance spectra: standard normalized variate (SNV), autoscales (AUT), normalization (NOR), Savitzky–Golay convolutional smoothing (SG), and mean centering (MC). Additionally, the competitive adaptive reweighted sampling (CARS) method was employed to reduce the dimensionality of the high-dimensional hyperspectral data. In order to predict the cyanidin, petunidin, delphinidin, and total anthocyanin content of eggplant fruit, two models were constructed: partial least squares regression (PLSR) and least squares support vector machine (LS-SVM). The HPLC results showed that eggplant peel primarily contains three types of anthocyanins. Furthermore, there were significant differences in the average reflectance rates between 400–750 nm wavelength ranges for different colors of eggplant peel. The prediction model results indicated that the model based on NOR CARS LS-SVM achieved the best performance, with a squared coefficient of determination (R2) greater than 0.98, RMSEP and RMSEC less than 0.03 for cyanidin, petunidin, delphinidin, and total anthocyanin predication. These results suggest that hyperspectral imaging is a rapid and non-destructive technique for assessing the anthocyanin content of eggplant peel. This approach holds promise for facilitating the more effective eggplant breeding.

Funder

Natural Science Foundation of Hai Nan Province

Key R&D Projects in Hainan Province

Central Public-interest Scientific Institution Basal Research Fund

Key R&D Projects in Guangdong Province

Publisher

PeerJ

Reference38 articles.

1. Antioxidant and antihyperlipidemic activities of anthocyanins from eggplant peels;Basuny;Journal of Pharma Research & Reviews,2012

2. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression;Burnett;Journal of Experimental Botany,2021

3. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging;Caporaso;Journal of Food Engineering,2018

4. Chemical studies of anthocyanins: a review;Castañeda Ovando;Food Chemistry,2009

5. Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging;Chen;Food Chemistry,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3