The impact of the GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase

Author:

Alexander Liza Esther,Winkelman Dirk,Stenback Kenna E.,Lane Madison,Campbell Katelyn R.,Trost Elysse,Flyckt Kayla,Schelling Michael A.,Rizhsky Ludmila,Yandeau-Nelson Marna D.,Nikolau Basil J.

Abstract

The maize glossy2 and glossy2-like genes are homologs, which encode proteins that belong to the BAHD family of acyltransferases. In planta genetic studies have demonstrated that these genes may be involved in the elongation of very long chain fatty acids (VLCFAs) that are precursors of the cuticular wax fraction of the plant cuticle. VLCFAs are synthesized by a fatty acyl-CoA elongase complex (FAE) that consists of four component enzymes. Previously, we functionally identified the maize FAE component enzymes by their ability to complement haploid Saccharomyces cerevisiae strains that carry lethal deletion alleles for each FAE component enzyme. In this study we used these complemented haploid strains and wild-type diploid strains to evaluate whether the co-expression of either GLOSSY2 or GLOSSY2-LIKE with individual maize FAE component enzymes affects the VLCFA product-profile of the FAE system. Wild-type diploid strains produced VLCFAs of up to 28-carbon chain length. Co-expression of GLOSSY2 or GLOSSY2-LIKE with a combination of maize 3-ketoacyl-CoA synthases stimulated the synthesis of longer VLCFAs, up to 30-carbon chain lengths. However, such results could not be recapitulated when these co-expression experiments were conducted in the yeast haploid mutant strains that lacked individual components of the endogenous FAE system. Specifically, lethal yeast mutant strains that are genetically complemented by the expression of maize FAE-component enzymes produce VLCFAs that range between 20- and 26-carbon chain lengths. However, expressing either GLOSSY2 or GLOSSY2-LIKE in these complemented strains does not enable the synthesis of longer chain VLCFAs. These results indicate that the apparent stimulatory role of GLOSSY2 or GLOSSY2-LIKE to enable the synthesis of longer chain VLCFAs in diploid yeast cells may be associated with mixing plant enzyme components with the endogenous FAE complex.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3