Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification

Author:

Wang Hengbin,Chang Wanqiu,Yao Yu,Yao Zhiying,Zhao Yuanyuan,Li Shaoming,Liu Zhe,Zhang Xiaodong

Abstract

Accurate and efficient crop classification using remotely sensed data can provide fundamental and important information for crop yield estimation. Existing crop classification approaches are usually designed to be strong in some specific scenarios but not for multi-scenario crop classification. In this study, we proposed a new deep learning approach for multi-scenario crop classification, named Cropformer. Cropformer can extract global features and local features, to solve the problem that current crop classification methods extract a single feature. Specifically, Cropformer is a two-step classification approach, where the first step is self-supervised pre-training to accumulate knowledge of crop growth, and the second step is a fine-tuned supervised classification based on the weights from the first step. The unlabeled time series and the labeled time series are used as input for the first and second steps respectively. Multi-scenario crop classification experiments including full-season crop classification, in-season crop classification, few-sample crop classification, and transfer of classification models were conducted in five study areas with complex crop types and compared with several existing competitive approaches. Experimental results showed that Cropformer can not only obtain a very significant accuracy advantage in crop classification, but also can obtain higher accuracy with fewer samples. Compared to other approaches, the classification performance of Cropformer during model transfer and the efficiency of the classification were outstanding. The results showed that Cropformer could build up a priori knowledge using unlabeled data and learn generalized features using labeled data, making it applicable to crop classification in multiple scenarios.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3