Did Wheat Breeding Simultaneously Alter Grain Concentrations of Macro- and Micro-Nutrient Over the Past 80 Years of Cultivar Releasing in China?

Author:

Hao Baozhen,Ma Jingli,Si Luyao,Jiang Lina,Wang Xiaojie,Yao Chong,Ma Siyuan,Li Chunxi,Gao Zhiqiang,Wang Zhimin

Abstract

Biofortification of wheat with mineral through crop breeding is a sustainable and cost-effective approach to address human mineral malnutrition. A better understanding of the trends of grain concentrations of mineral nutrients in wheat over the breeding period may help to assess the breeding progress to date. A 2-year field experiment using 138 Chinese wheat landraces and 154 cultivars was conducted. Grain concentrations of micronutrients (Cu and Mn) and macronutrients (N, P, and K) were measured and corrected for a yield level to elucidate the trends of these mineral nutrients over the 80 years of cultivar releasing and identify genetic variation for these mineral nutrients in cultivars and landraces. Large genetic variation exists for grain mineral nutrients concentrations among tested genotypes, indicating that selection for enhancing mineral nutrient concentrations in wheat is possible. Landraces showed a slightly wide genetic variation of grain Cu concentration and a much narrow variation of Mn concentration when compared to modern cultivars. Grain concentrations of Cu and Mn decreased slightly with increasing grain yield with a weak correlation, while N, P, and K concentrations declined obviously with increasing yield with a strong correlation, revealing that increased grain yield had a strong negative effect on grain concentration of macronutrients, but a relative weak negative effect on micronutrients concentrations. When considering the impact of the variation in yield on mineral concentrations, grain concentrations of Cu, Mn, N, P, and K in wheat cultivars released from 1933 to 2017 exhibited different trends with a year of variety release. Grain Cu, N, and P concentrations showed significant decreasing trends over a breeding period, while grain Mn and K concentrations showed no clear trend, suggesting wheat breeding in China over the past 80 years has decreased grain concentrations of Cu, N, and P, and did not alter Mn and K concentrations. Finally, a total of 14 outstanding accessions with high grain mineral nutrients concentrations/contents were identified, and these genotypes can be considered as promising donors for developing mineral-dense wheat cultivars.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3