Cloning and Bioinformatics Analysis of GhArfGAP in Cotton (Gossypium hirsutum) Boll Abscission Layer With Ethylene Treatment

Author:

Chen Long,Liu AnFeng,Guo ZiWen,Jiang Hui,Luo Ling,Gao JunShan,Li DaHui,Ye SiHong,Guo Ning

Abstract

With the continuous growth of the human population, the demand for fiber is also rising sharply. As one of the main fiber plants available globally, cotton fiber yield (Gossypium hirsutum) is affected by boll abscission, which is related to the formation of the abscission layer. Therefore, we explored the formation of the abscission layer in cotton. The formation of the abscission layer in the cotton boll stalk was promoted by exogenous ethylene. It was found that both the number of the Golgi apparatus and the number of stacking layers increased in the dissociated cells. The GhArfGAP gene family in cotton was screened by the bioinformatics method, and the species and evolutionary relationship of the GhArfGAP gene family were analyzed. qRT-PCR showed that GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 in cotton had spatiotemporal-specific expression patterns. Subcellular localization suggested that GhArfGAP25 played a role in the Golgi apparatus. The expression of GhArfGAP25 in transgenic Arabidopsis thaliana is increased in the roots, stems, and leaves. Finally, we found that ethylene could induce the formation of the abscission layer in cotton. GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 might regulate the changes in the Golgi apparatus in the abscission layer. Taken together, the findings provide new ideas for the study of the formation of cotton abscission.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3