Author:
Zhao Ning,Geng Zhao,Zhao Guiyuan,Liu Jianguang,An Zetong,Zhang Hanshuang,Ai Pengfei,Wang Yongqiang
Abstract
Abstract
Background
Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome.
Results
When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules.
Conclusions
In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Qureshi HWUSA. Fruit drop in cotton: some causes. J Agri Food. 2021;2(2):36–62.
2. Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L. The SEPALLATA MADS-box protein SLMBP 21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J. 2014;77(2):284–96.
3. Ito Y, Nakano T. Development and regulation of pedicel abscission in tomato. Front Plant Sci. 2015;6:442.
4. Roldan MVG, Périlleux C, Morin H, Huerga-Fernandez S, Latrasse D, Benhamed M, Bendahmane A. Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci Rep. 2017;7(1):4402.
5. Li Z, Zhang S, Huang RF. Expression characteristics of OsSHAT1 and OsRSR1 response hormones and stress in rice. Biotechnol Bull. 2015;31(3):88–95.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献