Comparative phylogenomic analyses and co-expression gene network reveal insights in flowering time and aborted meiosis in woody bamboo, Bambusa oldhamii ‘Xia Zao’ ZSX

Author:

Zhao Wanqi,Guo Chunce,Yao Wenjing,Zhang Li,Ding Yulong,Yang Zhenzhen,Lin Shuyan

Abstract

Woody bamboos have peculiar flowering characteristics with intervals ranging from several years to more than 100 years. Elucidating flowering time and reproductive development in bamboo could be beneficial for both humans and wildlife. To identity the mechanisms responsible for flowering time and embryo abortion in Bambusa oldhamii ‘Xia Zao’ ZSX, a transcriptome sequencing project was initiated to characterize the genes involved in developing flowers in this bamboo species. Morphological studies showed that pollen abortion in this bamboo species was mainly caused by a delay in tapetum degradation and abnormal meiotic process. Differential expression (DE) and optimized hierarchical clustering analyses identified three of nine gene expression clusters with decreasing expression at the meiosis of flowering stages. Together with enriched Gene Ontology Biological Process terms for meiosis, this suggests that their expression pattern may be associated with aborted meiosis in B. oldhamii ‘Xia Zao’. Moreover, our large-scale phylogenomic analyses comparing meiosis-related transcripts of B. oldhamii ‘Xia Zao’ with well annotated genes in 22 representative angiosperms and sequence evolution analyses reveal two core meiotic genes NO EXINE FORMATION 1 (NFE1) and PMS1 with nonsense mutations in their coding regions, likely providing another line of evidence supporting embryo abortion in B. oldhamii ‘Xia Zao’. Similar analyses, however, reveal conserved sequence evolution in flowering pathways such as LEAFY (LFY) and FLOWERING LOCUS T (FT). Seventeen orthogroups associated with flowering were identified by DE analyses between nonflowering and flowering culm buds. Six regulators found primarily in several connected network nodes of the photoperiod pathway were confirmed by mapping to the flowering time network in rice, such as Heading date (Hd3a) and Rice FT-like 1 (RFT1) which integrate upstream signaling into the downstream effectors. This suggests the existence of an intact photoperiod pathway is likely the key regulators that switch on/off flowering in B. oldhamii ‘Xia Zao’.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3