Biological management of coffee wilt disease (Fusarium xylarioides) using antagonistic Trichoderma isolates

Author:

Mulatu Afrasa,Megersa Negussie,Teferi Demelash,Alemu Tesfaye,Vetukuri Ramesh Raju

Abstract

Coffee wilt disease (CWD) is a serious threat to the food security of small-scale farmers in Ethiopia, causing significant reductions in coffee yield. Currently, there are no effective control measures available against the causative agent of CWD, Fusarium xylarioides. The main objective of this study was therefore to develop, formulate, and evaluate a range of biofungicides against F. xylarioides, derived from Trichoderma species and tested under in vitro, greenhouse, and field conditions. In total, 175 Trichoderma isolates were screened as microbial biocontrol agents against F. xylarioides. The efficacy of two biofungicide formulations, wettable powder and water dispensable granules, were tested on the susceptible Geisha coffee variety in three different agro-ecological zones in southwestern Ethiopia over three years. The greenhouse experiments were set up using a complete block design, while in the field a randomized complete block design was used, with twice yearly applications of biofungicide. The test pathogen spore suspension was applied to the coffee seedlings by soil drenching, and the subsequent incidence and severity of CWD evaluated annually. The mycelial growth inhibition profiles of the Trichoderma isolates against F. xylarioides ranged from 44.5% to 84.8%. In vitro experiments revealed that T. asperelloides AU71, T. asperellum AU131 and T. longibrachiatum AU158 reduced the mycelial growth of F. xylarioides by over 80%. The greenhouse study indicated that wettable powder (WP) of T. asperellum AU131 had the highest biocontrol efficacy (84.3%), followed by T. longibrachiatum AU158 (77.9%) and T. asperelloides AU71 (71.2%); they also had a significant positive impact on plant growth. The pathogen-treated control plants had a disease severity index of 100% across all the field experiments, and of 76.7% in the greenhouse experiments. In comparison to untreated controls, the annual and cumulative disease incidence over the three years of the study period varied from 46.2 to 90%, 51.6 to 84.5%, and 58.2 to 91%, at the Teppi, Gera and Jimma field experimental locations. Overall, the greenhouse and field experiments and in vitro assays support the biocontrol potential of Trichoderma isolates, and T. asperellum AU131 and T. longibrachiatum AU158 in particular are recommended for the management of CWD under field conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference98 articles.

1. Genetic diversity in the coffee wilt pathogen (Gibberella xylarioides) populations: Differentiation by host specialization and RAPD analysis/Genetische diversität in der population des erregers der kaffeewelke (Gibberella xylarioides): Differenzierung durch wirtsspezifität und RAPD analyse;Adugna;J. Plant Dis. Protec.,2005

2. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of chhattisgarh in central India;Agrawal;SpringerPlus,2012

3. Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates;Aita;J. Environ. Chem. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3