Actinomycetes isolated from rhizosphere of wild Coffea arabica L. showed strong biocontrol activities against coffee wilt disease

Author:

Nuguse Mimi,Kejela TekalignORCID

Abstract

Coffee, the second most traded commodity globally after petroleum and is the most exported cash crop of Ethiopia. However, coffee cultivation faces challenges due to fungal diseases, resulting in significant yield losses. The primary fungal diseases affecting coffee production include coffee berry disease, wilt disease (caused by Gibberella xylarioides), and coffee leaf rust. In this study, we aimed to isolate potentially antagonistic actinomycetes from the root rhizosphere of wild Coffea arabica plants in the Yayo coffee forest biosphere in southwestern Ethiopia. Soil samples were collected from the rhizosphere, and actinomycetes were selectively isolated and identified to the genus level by morphological, physiological, and biochemical characterization. These pure isolates were screened for their antagonistic activity against Gibberella xylarioides in vitro using a dual culturing method. Promising isolates demonstrating strong inhibition of fungal mycelial growth were further investigated through in vivo experiments using coffee seedlings. A total of 82 rhizobacteria were isolated. These isolates’ inhibition of fungal mycelial growth varied from 0% to 83.3%. Among them, four isolates MUA26, MUA13, MUA52, and MUA14 demonstrated the highest percentage inhibition of fungal mycelial growth: 83.3%, 80%, 76.67%, and 73.3%, respectively. Seedlings inoculated with MUA13, MUA14, and MUA26 during the challenge inoculations (Rhizobacteria + Gibberella xylarioides) exhibited the lowest disease incidence compared to the infected fungi (P < 0.05). Notably, the seedlings inoculated with MUA26 demonstrated the highest disease control efficiency, reaching 83% (P < 0.05). MUA26 was found to produce extracellular enzymes, including chitinase, protease, and lipase, which acted as inhibitors. In summary, this study highlights that MUA26, among the actinomycete isolates, exhibited significant antagonistic activity against Gibberella xylarioides f.sp. coffea. Its efficacy in controlling coffee wilt disease, both in vitro and in vivo, positions it as a potential bioinoculant for managing coffee wilt disease.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3