Abstract
Coffee, the second most traded commodity globally after petroleum and is the most exported cash crop of Ethiopia. However, coffee cultivation faces challenges due to fungal diseases, resulting in significant yield losses. The primary fungal diseases affecting coffee production include coffee berry disease, wilt disease (caused by Gibberella xylarioides), and coffee leaf rust. In this study, we aimed to isolate potentially antagonistic actinomycetes from the root rhizosphere of wild Coffea arabica plants in the Yayo coffee forest biosphere in southwestern Ethiopia. Soil samples were collected from the rhizosphere, and actinomycetes were selectively isolated and identified to the genus level by morphological, physiological, and biochemical characterization. These pure isolates were screened for their antagonistic activity against Gibberella xylarioides in vitro using a dual culturing method. Promising isolates demonstrating strong inhibition of fungal mycelial growth were further investigated through in vivo experiments using coffee seedlings. A total of 82 rhizobacteria were isolated. These isolates’ inhibition of fungal mycelial growth varied from 0% to 83.3%. Among them, four isolates MUA26, MUA13, MUA52, and MUA14 demonstrated the highest percentage inhibition of fungal mycelial growth: 83.3%, 80%, 76.67%, and 73.3%, respectively. Seedlings inoculated with MUA13, MUA14, and MUA26 during the challenge inoculations (Rhizobacteria + Gibberella xylarioides) exhibited the lowest disease incidence compared to the infected fungi (P < 0.05). Notably, the seedlings inoculated with MUA26 demonstrated the highest disease control efficiency, reaching 83% (P < 0.05). MUA26 was found to produce extracellular enzymes, including chitinase, protease, and lipase, which acted as inhibitors. In summary, this study highlights that MUA26, among the actinomycete isolates, exhibited significant antagonistic activity against Gibberella xylarioides f.sp. coffea. Its efficacy in controlling coffee wilt disease, both in vitro and in vivo, positions it as a potential bioinoculant for managing coffee wilt disease.
Publisher
Public Library of Science (PLoS)