Photoacclimation and Light Thresholds for Cold Temperate Seagrasses

Author:

Léger-Daigle Romy,Noisette Fanny,Bélanger Simon,Cusson Mathieu,Nozais Christian

Abstract

Water quality deterioration is expected to worsen the light conditions in shallow coastal waters with increasing human activities. Temperate seagrasses are known to tolerate a highly fluctuating light environment. However, depending on their ability to adjust to some decline in light conditions, decreases in daily light quantity and quality could affect seagrass physiology, productivity, and, eventually, survival if the Minimum Quantum Requirements (MQR) are not reached. To better understand if, how, and to what extent photosynthetic adjustments contribute to light acclimation, eelgrass (Zostera marina L.) shoots from the cold temperate St. Lawrence marine estuary (Rimouski, QC, Canada) were exposed to seven light intensity treatments (6, 36, 74, 133, 355, 503, and 860 μmol photons m–2 s–1, 14:10 light:dark photoperiod). Photosynthetic capacity and efficiency were quantified after five and 25 days of light exposure by Pulse Amplitude Modulated (PAM) fluorometry to assess the rapid response of the photosynthetic apparatus and its acclimation potential. Photoacclimation was also studied through physiological responses of leaves and shoots (gross and net primary production, pigment content, and light absorption). Shoots showed proof of photosynthetic adjustments at irradiances below 200 μmol photons m–2 s–1, which was identified as the threshold between limiting and saturating irradiances. Rapid Light Curves (RLC) and net primary production (NPP) rates revealed sustained maximal photosynthetic rates from the highest light treatments down to 74 μmol photons m–2 s–1, while a compensation point (NPP = 0) of 13.7 μmol photons m–2 s–1 was identified. In addition, an important package effect was observed, since an almost three-fold increase in chlorophyll content in the lowest compared to the highest light treatment did not change the leaves’ light absorption. These results shed new light on photosynthetic and physiological processes, triggering light acclimation in cold temperate eelgrass. Our study documents an MQR value for eelgrass in the St. Lawrence estuary, which is highly pertinent in the context of conservation and restoration of eelgrass meadows.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Space Agency

Publisher

Frontiers Media SA

Subject

Plant Science

Reference81 articles.

1. Light harvesting among photosynthetic organisms.;Agusti;Funct. Ecol.,1994

2. Temporal variation of light availability in coastal benthic habitats: effects of clouds, turbidity, and tides.;Anthony;Limnol. Oceanogr.,2004

3. Photosynthetic oxygen exchange.;Badger;Annu. Rev. Plant Physiol. Plant Mol. Biol.,1985

4. Measurements of photosynthetic rates in seagrasses;Beer;Global Seagrass Research Methods,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3