The Use of Photo-Biological Parameters to Assess the Establishment Success of Posidonia oceanica Cuttings after Transplantation

Author:

Boulenger Arnaud12ORCID,Roberty Stéphane3ORCID,Lopez Velosa Maria Margarita1,Marengo Michel2,Gobert Sylvie12ORCID

Affiliation:

1. Laboratory of Oceanology, MARE Centre, UR FOCUS, University of Liège, 11 Allée du Six Août, 4000 Liege, Belgium

2. STAtion de REcherches Sous-Marines et Océanographiques (STARESO), 20260 Calvi, France

3. Laboratory of Animal Physiology and Ecophysiology, University of Liège, 4 Chemin de la Vallée, 4000 Liege, Belgium

Abstract

Seagrass meadows are increasingly threatened by anthropogenic activities and climate change, necessitating restoration efforts such as cutting transplantation. Understanding the complex interactions between plant morphology and physiology is crucial for designing robust restoration strategies and assessing the success of transplantation and recovery processes. A pilot transplantation experiment with the Mediterranean seagrass Posidonia oceanica (L.) Delile was conducted in Northwestern Corsica (Calvi, France) to evaluate the feasibility of meadows degraded due to boat anchoring. The effects of the cuttings’ origin and transplanting depth were investigated. The establishment success of transplanted fragments was assessed by investigating the photo-physiological parameters, carbohydrate content, and biometric parameters of both transplanted and control plants one year after transplantation at depths of 20 and 28 m. After one year, there was a high survival rate (90%) of the transplants, but their leaf surface area and biomass were significantly reduced compared to the control plants. Photosynthetic activity remained consistent between both depths, emphasizing the ability of P. oceanica cuttings to acclimate to a new light environment in a relatively short period of time (<3 months). Furthermore, light-harvesting pigments, photoprotective pigments, and carbohydrate concentration were greater at the deeper sites. This implies that transplantation at greater depths might be more effective. Furthermore, additional research is necessary to enhance our understanding of the relationship between photosynthesis and the overall health of the plant. This study emphasizes the essential integration of morphological and physiological investigations to offer an ecologically meaningful understanding of how marine ecosystems respond to various restoration methods.

Funder

University of Liege

Fonds National de la Recherche Scientifique—FNRS

Territorial Collectivity of Corsica

French Water Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3