Community Trait Responses of Three Dominant Macrophytes to Variations in Flooding During 2011–2019 in a Yangtze River-Connected Floodplain Wetland (Dongting Lake, China)

Author:

Huang Ying,Chen Xin-Sheng,Li Feng,Hou Zhi-Yong,Li Xu,Zeng Jing,Deng Zheng-Miao,Zou Ye-Ai,Xie Yong-Hong

Abstract

In lacustrine wetlands connected to rivers, the changes in flood regimes caused by hydrological projects lead to changes in the community traits of dominant macrophytes and, consequently, influence the structure and function of wetland vegetation. However, community trait responses of macrophytes to the timing and duration of flood disturbance have been rarely quantified. In 2011–2019, we investigated plant species diversity, density, and biomass in three dominant macrophyte communities (Carex brevicuspis C.B. Clarke, Miscanthus sacchariflorus (Maxim.) Hackel, and Polygonum hydropiper L.) through monthly field surveys in Dongting Lake wetlands. Partial least squares regressions were used to analyze how the variations in hydrological regimes affected plant community traits. Apparent inter-annual fluctuations in plant community traits were detected during 2011–2019. The species richness and Shannon index of diversity of Miscanthus and Polygonum communities increased, whereas the Shannon index of diversity of Carex community decreased. Variation in flooding had a greater effect on Polygonum and Carex community traits than on Miscanthus community traits. Flooding disturbed all plant communities, especially when the duration and timing varied. Shorter inundation periods caused the biomass of Miscanthus community to decline, and that of Carex and Polygonum communities to increase. Earlier flood recession caused the species richness and Shannon index of diversity of Polygonum and Miscanthus community to increase, and those of Carex community to decrease. These findings imply that shorter inundation durations and earlier flood recession generated by the operation of the Three Gorges Dam have changed the macrophyte growth pattern.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3