Monitoring the Landscape Pattern Dynamics and Driving Forces in Dongting Lake Wetland in China Based on Landsat Images

Author:

Guo Mengshen1ORCID,Zhou Nianqing1,Cai Yi1,Zhao Wengang2,Lu Shuaishuai1,Liu Kehao1

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Hunan Institute of Water Resources and Hydropower Research, Changsha 410007, China

Abstract

Dongting Lake wetland is a typical lake wetland in the Middle and Lower Yangtze River Plain in China. Due to the influence of natural and human activities, the landscape pattern has changed significantly. This study used 12 Landsat images from 1991 to 2022 and applied three common classification methods (support vector machine, maximum likelihood, and CART decision tree) to extract and classify the landscape information, with the latter having a superior annual accuracy of over 90%. Based on the CART decision tree classification results, the dynamic characteristics of wetland spatial patterns were analyzed through the landscape pattern index, dynamic degree model, and transition matrix model. Redundancy and grey correlation analysis were employed to investigate the driving factors. The results showed increased landscape fragmentation, reduced heterogeneity, and increased complexity from 1991 to 2022. The water and mudflat areas exhibited three distinct stages: gradual decline until 2001 (−3.06 km2/a); sharp decrease until 2014 (−19.44 km2/a); and steady increase (22.93 km2/a). Vegetation conversion, particularly between sedge and reed, dominated the change in landscape pattern. Reed area initially increased (18.88 km2/a), then decreased (−35.89 km2/a), while sedge showed the opposite trend. Woodland area fluctuated, peaking in 2016 and declined by 2022. The construction of the Three Gorges Dam significantly altered landscape dynamics through water level changes, reflected by a 4.03% comprehensive dynamic degree during 2001–2004. Potential evaporation also emerged as a significant natural factor, exhibiting a negative correlation with the landscape index. During 1991–2001 and 2004–2022, the comprehensive explanatory rates of temperature, precipitation, potential evaporation, and water level on landscape pattern dynamics were 88.56% and 52.44%, respectively. Other factors like policies and socio-economic factors played a crucial role in wetland change. These findings offer valuable insights into the dynamic evolution and driving mechanisms of Dongting Lake wetland.

Funder

Strategic Research Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3