Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensis SPAD values under different shade conditions

Author:

Yuan Ying,Wang Xuefeng,Shi Mengmeng,Wang Peng

Abstract

Reasonable cultivation is an important part of the protection work of endangered species. The timely and nondestructive monitoring of chlorophyll can provide a basis for the accurate management and intelligent development of cultivation. The image analysis method has been applied in the nutrient estimation of many economic crops, but information on endangered tree species is seldom reported. Moreover, shade control, as the common seedling management measure, has a significant impact on chlorophyll, but shade levels are rarely discussed in chlorophyll estimation and are used as variables to improve model accuracy. In this study, 2-year-old seedlings of tropical and endangered Hopea hainanensis were taken as the research object, and the SPAD value was used to represent the relative chlorophyll content. Based on the performance comparison of RGB and multispectral (MS) images using different algorithms, a low-cost SPAD estimation method combined with a machine learning algorithm that is adaptable to different shade conditions was proposed. The SPAD values changed significantly at different shade levels (p < 0.01), and 50% shade in the orthographic direction was conducive to chlorophyll accumulation in seedling leaves. The coefficient of determination (R2), root mean square error (RMSE), and average absolute percent error (MAPE) were used as indicators, and the models with dummy variables or random effects of shade greatly improved the goodness of fit, allowing better adaption to monitoring under different shade conditions. Most of the RGB and MS vegetation indices (VIs) were significantly correlated with the SPAD values, but some VIs exhibited multicollinearity (variance inflation factor (VIF) > 10). Among RGB VIs, RGRI had the strongest correlation, but multiple VIs filtered by the Lasso algorithm had a stronger ability to interpret the SPAD data, and there was no multicollinearity (VIF < 10). A comparison of the use of multiple VIs to estimate SPAD indicated that Random forest (RF) had the highest fitting ability, followed by Support vector regression (SVR), linear mixed effect model (LMM), and ordinary least squares regression (OLR). In addition, the performance of MS VIs was superior to that of RGB VIs. The R2 of the optimal model reached 0.9389 for the modeling samples and 0.8013 for the test samples. These findings reinforce the effectiveness of using VIs to estimate the SPAD value of H. hainanensis under different shade conditions based on machine learning and provide a reference for the selection of image data sources.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference56 articles.

1. Assessment of spinach seedling health status and chlorophyll content by multivariate data analysis and multiple linear regression of leaf image features;Agarwal;Comput. Electron. Agric.,2018

2. Using machine learning for estimating Rice chlorophyll content from in situ hyperspectral data;An;Remote Sens.,2020

3. Preliminary assessment of growth and leaf nitrogen of Hopea odorata established in two different soil conditions;Azaruddin;J. Trop. Plant Physiol.,2006

4. Combining UAV-based plant height from crop surface models, visible, and near-infrared vegetation indices for biomass monitoring in barley;Bendig;Int. J. Appl. Earth Obs. Geoinf.,2015

5. Random forests;Breiman;Mach. Learn.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3