Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery

Author:

Wang Hongquan1ORCID,Singh Keshav D.1ORCID,Poudel Hari P.1ORCID,Natarajan Manoj1ORCID,Ravichandran Prabahar1ORCID,Eisenreich Brandon1

Affiliation:

1. Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada

Abstract

Crop height and biomass are the two important phenotyping traits to screen forage population types at local and regional scales. This study aims to compare the performances of multispectral and RGB sensors onboard drones for quantitative retrievals of forage crop height and biomass at very high resolution. We acquired the unmanned aerial vehicle (UAV) multispectral images (MSIs) at 1.67 cm spatial resolution and visible data (RGB) at 0.31 cm resolution and measured the forage height and above-ground biomass over the alfalfa (Medicago sativa L.) breeding trials in the Canadian Prairies. (1) For height estimation, the digital surface model (DSM) and digital terrain model (DTM) were extracted from MSI and RGB data, respectively. As the resolution of the DTM is five times less than that of the DSM, we applied an aggregation algorithm to the DSM to constrain the same spatial resolution between DSM and DTM. The difference between DSM and DTM was computed as the canopy height model (CHM), which was at 8.35 cm and 1.55 cm for MSI and RGB data, respectively. (2) For biomass estimation, the normalized difference vegetation index (NDVI) from MSI data and excess green (ExG) index from RGB data were analyzed and regressed in terms of ground measurements, leading to empirical models. The results indicate better performance of MSI for above-ground biomass (AGB) retrievals at 1.67 cm resolution and better performance of RGB data for canopy height retrievals at 1.55 cm. Although the retrieved height was well correlated with the ground measurements, a significant underestimation was observed. Thus, we developed a bias correction function to match the retrieval with the ground measurements. This study provides insight into the optimal selection of sensor for specific targeted vegetation growth traits in a forage crop.

Funder

Beef Cattle Research Council

Agriculture and Agri-Food Canada (AAFC), Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3