Research on multi-cluster green persimmon detection method based on improved Faster RCNN

Author:

Liu Yangyang,Ren Huimin,Zhang Zhi,Men Fansheng,Zhang Pengyang,Wu Delin,Feng Ruizhuo

Abstract

To address the problem of accurate recognition and localization of multiple clusters of green persimmons with similar color to the background under natural environment, this study proposes a multi-cluster green persimmon identification method based on improved Faster RCNN was proposed by using the self-built green persimmon dataset. The feature extractor DetNet is used as the backbone feature extraction network, and the model detection attention is focused on the target object itself by adding the weighted ECA channel attention mechanism to the three effective feature layers in the backbone, and the detection accuracy of the algorithm is improved. By maximizing the pooling of the lower layer features with the added attention mechanism, the high and low dimensions and magnitudes are made the same. The processed feature layers are combined with multi-scale features using a serial layer-hopping connection structure to enhance the robustness of feature information, effectively copes with the problem of target detection of objects with obscured near scenery in complex environments and accelerates the detection speed through feature complementarity between different feature layers. In this study, the K-means clustering algorithm is used to group and anchor the bounding boxes so that they converge to the actual bounding boxes, The average mean accuracy (mAP) of the improved Faster RCNN model reaches 98.4%, which was 11.8% higher than that of traditional Faster RCNN model, which also increases the accuracy of object detection during regression prediction. and the average detection time of a single image is improved by 0.54s. The algorithm is significantly improved in terms of accuracy and speed, which provides a basis for green fruit growth state monitoring and intelligent yield estimation in real scenarios.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3