Abstract
AbstractAutomatic detection and counting of vehicles in a video is a challenging task and has become a key application area of traffic monitoring and management. In this paper, an efficient real-time approach for the detection and counting of moving vehicles is presented based on YOLOv2 and features point motion analysis. The work is based on synchronous vehicle features detection and tracking to achieve accurate counting results. The proposed strategy works in two phases; the first one is vehicle detection and the second is the counting of moving vehicles. Different convolutional neural networks including pixel by pixel classification networks and regression networks are investigated to improve the detection and counting decisions. For initial object detection, we have utilized state-of-the-art faster deep learning object detection algorithm YOLOv2 before refining them using K-means clustering and KLT tracker. Then an efficient approach is introduced using temporal information of the detection and tracking feature points between the framesets to assign each vehicle label with their corresponding trajectories and truly counted it. Experimental results on twelve challenging videos have shown that the proposed scheme generally outperforms state-of-the-art strategies. Moreover, the proposed approach using YOLOv2 increases the average time performance for the twelve tested sequences by 93.4% and 98.9% from 1.24 frames per second achieved using Faster Region-based Convolutional Neural Network (F R-CNN ) and 0.19 frames per second achieved using the background subtraction based CNN approach (BS-CNN ), respectively to 18.7 frames per second.
Funder
The National Research Institute of Astronomy and Geophysics
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Reference42 articles.
1. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934
2. Bouguet J-Y, et al. (2001) Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation 5(1-10):4
3. Chen D-Y, Chen G-R, Wang Y-W (2013) Real-time dynamic vehicle detection on resource-limited mobile platform. IET Comput Vis 7(2):81–89
4. Chen Y, Hu W (2020) Robust vehicle detection and counting algorithm adapted to complex traffic environments with sudden illumination changes and shadows. Sensors 20(9):2686
5. Chmiel W, Dańda J, Dziech A, Ernst S, Kadłuczka P, Mikrut Z, Pawlik P, Szwed P, Wojnicki I (2016) Insigma: an intelligent transportation system for urban mobility enhancement. Multimed Tools Appl 75(17):10529–10560
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献