Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism

Author:

Wang Junwen,Zhang Jing,Li Jing,Dawuda Mohammed Mujitaba,Ali Basharat,Wu Yue,Yu Jihua,Tang Zhongqi,Lyu Jian,Xiao Xuemei,Hu Linli,Xie Jianming

Abstract

5-Aminolevulinic acid (ALA) plays an important role in plant growth and development. It can also be used to enhance crop resistance to environmental stresses and improve the color and internal quality of fruits. However, there are limited reports regarding the effects of ALA on tomato fruit color and its regulatory mechanisms. Therefore, in this study, the effects of exogenous ALA on the quality and coloration of tomato fruits were examined. Tomato (Solanum lycopersicum “Yuanwei No. 1”) fruit surfaces were treated with different concentrations of ALA (0, 100, and 200 mg⋅L–1) on the 24th day after fruit setting (mature green fruit stage), and the content of soluble sugar, titratable acid, soluble protein, vitamin C, and total free amino acids, as well as amino acid components, intermediates of lycopene synthetic and metabolic pathways, and ALA metabolic pathway derivatives were determined during fruit ripening. The relative expression levels of genes involved in lycopene synthesis and metabolism and those involved in ALA metabolism were also analyzed. The results indicated that exogenous ALA (200 mg⋅L–1) increased the contents of soluble sugars, soluble proteins, total free amino acids, and vitamin C as well as 11 kinds of amino acid components in tomato fruits and reduced the content of titratable acids, thus improving the quality of tomato fruits harvested 4 days earlier than those of the control plants. In addition, exogenous ALA markedly improved carotenoid biosynthesis by upregulating the gene expression levels of geranylgeranyl diphosphate synthase, phytoene synthase 1, phytoene desaturase, and lycopene β-cyclase. Furthermore, exogenous ALA inhibited chlorophyll synthesis by downregulating the genes expression levels of Mg-chelatase and protochlorophyllide oxidoreductase. These findings suggest that supplementation with 200 mg⋅L–1 ALA not only enhances the nutritional quality and color of the fruit but also promotes early fruit maturation in tomato.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3