Short-term but not long-term perennial mugwort cropping increases soil organic carbon in Northern China Plain

Author:

Zhou Zhenxing,Tian Furong,Zhao Xiang,Zhang Kunpeng,Han Shijie

Abstract

Perennial cropping has been an alternative land use type due to its widely accepted role in increasing soil carbon sequestration. However, how soil organic carbon (SOC) changes and its underlying mechanisms under different cropping years are still elusive. A chronosequence (0-, 3-, 6-, 20-year) of perennial mugwort cropping was chosen to explore the SOC dynamics and the underlying mechanisms in agricultural soils of Northern China Plain. The results revealed that SOC first increased and then decreased along the 20-year chronosequence. The similar patterns were also found in soil properties (including soil ammonium nitrogen, total nitrogen and phosphorus) and two C-degrading hydrolytic enzyme activities (i.e., α-glucosidase and β-glucosidase). The path analysis demonstrated that soil ammonium nitrogen, total nitrogen, and plant biomass affected SOC primarily through the indirect impacts on soil pH, total phosphorus availability, and C-degrading hydrolytic enzyme activities. In addition, the contributions of soil properties are greater than those of biotic factors (plant biomass) to changes in SOC across the four mugwort cropping years. Nevertheless, the biotic factors may play more important roles in regulating SOC than abiotic factors in the long run. Moreover, SOC reached its maximum and was equaled to that under the conventional rotation when cropping mugwort for 7.44 and 14.88 years, respectively, which has critical implications for sustainable C sequestration of agricultural soils in Northern China Plain. Our observations suggest that short-term but not long-term perennial mugwort cropping is an alternative practice benefiting soil C sequestration and achieving the Carbon Neutrality goal in China.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3