Photosynthetic Physiological Characteristics of Water and Nitrogen Coupling for Enhanced High-Density Tolerance and Increased Yield of Maize in Arid Irrigation Regions

Author:

Guo Yao,Yin Wen,Fan Hong,Fan Zhilong,Hu Falong,Yu Aizhong,Zhao Cai,Chai Qiang,Aziiba Emmanuel Asibi,Zhang Xijun

Abstract

To some extent, the photosynthetic traits of developing leaves of maize are regulated systemically by water and nitrogen. However, it remains unclear whether photosynthesis is systematically regulated via water and nitrogen when maize crops are grown under close (high density) planting conditions. To address this, a field experiment that had a split-split plot arrangement of treatments was designed. Two irrigation levels on local traditional irrigation level (high, I2, 4,050 m3 ha−1) and reduced by 20% (low, I1, 3,240 m3 ha−1) formed the main plots; two levels of nitrogen fertilizer at a local traditional nitrogen level (high, N2, 360 kg ha−1) and reduced by 25% (low, N1, 270 kg ha−1) formed the split plots; three planting densities of low (D1, 7.5 plants m−2), medium (D2, 9.75 plants m−2), and high (D3, 12 plants m−2) formed the split-split plots. The grain yield, gas exchange, and chlorophyll a fluorescence of the closely planted maize crops were assessed. The results showed that water–nitrogen coupling regulated their net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), quantum yield of non-regulated non-photochemical energy loss [Y(NO)], actual photochemical efficiency of PSII [Y(II)], and quantum yield of regulated non-photochemical energy loss [Y(NPQ)]. When maize plants were grown at low irrigation with traditional nitrogen and at a medium density (i.e., I1N2D2), they had Pn, Gs, and Tr higher than those of grown under traditional treatment conditions (i.e., I2N2D1). Moreover, the increased photosynthesis in the leaves of maize in the I1N2D2 treatment was mainly caused by decreased Y(NO), and increased Y(II) and Y(NPQ). The coupling of 20%-reduced irrigation with the traditional nitrogen application boosted the grain yield of medium density-planted maize, whose Pn, Gs, Tr, Y(II), and Y(NPQ) were enhanced, and its Y(NO) was reduced. Redundancy analysis revealed that both Y(II) and SPAD were the most important physiological factors affecting maize yield performance, followed by Y(NPQ) and NPQ. Using the 20% reduction in irrigation and traditional nitrogen application at a medium density of planting (I1N2D2) could thus be considered as feasible management practices, which could provide technical guidance for further exploring high yields of closely planted maize plants in arid irrigation regions.

Funder

Science and Technology Program of Gansu Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3