Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation

Author:

Wu Fengquan1,Tang Qiuxiang1,Cui Jianping2,Tian Liwen2,Guo Rensong2,Wang Liang2,Lin Tao2

Affiliation:

1. Engineering Research Centre of Cotton, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China

2. Key Laboratory of Crop Physiology, Ecology and Cultivation in Desert Oasis, Ministry of Agriculture and Rural Affairs, Institute of Cash Crop, Xinjiang Academy Sciences, Urumqi 830091, China

Abstract

The optimization of plant density plays a crucial role in cotton production, and deficit irrigation, as a water-saving measure, has been widely adopted in arid regions. However, regulatory mechanisms governing nitrogen absorption, transportation, and nitrogen use efficiency (NUE) in cotton under deficit irrigation and high plant density remain unclear. To clarify the mechanisms of N uptake and NUE of cotton, the main plots were subjected to three irrigation amounts based on field capacity (Fc): (315 [W1, 0.5 Fc], 405 [W2, 0.75 Fc, farmers’ irrigation practice], and 495 mm [W3, 1.0 Fc]). Subplots were planted and applied at three densities: (13.5 [M1], 18.0 [M2, farmers’ planting practice], and 22.5 [M3] plants m−2). The results revealed that under low-irrigation conditions, the cotton yield was 5.1% lower than that under the farmer’s irrigation practice. In all plant densities and years, the nitrogen uptake of cotton increased significantly with the increase in irrigation. However, excessive irrigation resulted in nitrogen accumulation and migration, mainly concentrated in the vegetative organs of cotton, which reduced the NUE by 9.2% compared with that under farmers’ irrigation practice. Concerning the interaction between irrigation and plant density, under low irrigation, the nitrogen uptake of high-density planting was higher, and the yield of seed cotton was only 2.9% lower than that of the control (the interaction effect of farmers’ irrigation × plant density), but the NUE was increased by 10.9%. Notably, with the increase in irrigation amount, the soil nitrate nitrogen at the 0–40 cm soil layer decreased, and high irrigation amounts would lead to the transfer of soil nitrate nitrogen to deep soil. With the increase in plant density, the rate of nitrogen uptake and the amount of nitrogen uptake increased, which significantly reduced the soil nitrate nitrogen content. In conclusion, deficit irrigation and high plant density can improve cotton yield and NUE. We anticipate that these findings will facilitate optimized agricultural management in areas with limited water.

Funder

Xinjiang Academy of Agricultural Sciences Agricultural Science and Technology Innovation Stability Support Project

National Modern Agricultural Industry Technology System—Cotton Industry Technology System

Xinjiang Academy of Agricultural Sciences independent cultivation project

Tianshan Talent Training Program

Xinjiang Agriculture Research System-03

Xinjiang “Tianshan Talents” Training Program “Youth Top-notch Talent Project-Young Science and Technology Innovation Talents”

Xinjiang Uygur Autonomous Region financial special “Digital cotton Science and Technology Innovation Platform construction project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3