Fatty acid unsaturation improves germination of upland cotton (Gossypium hirsutum) under cold stress

Author:

Dhaliwal Lakhvir Kaur,Shim Junghyun,Auld Dick,Angeles-Shim Rosalyn B.

Abstract

IntroductionThe level of fatty acid unsaturation in seeds is one of the major determinants of cold germination ability, particularly in oilseeds. The presence of cis double bonds in unsaturated fatty acids creates bends that lowers their melting temperatures compared to saturated fatty acids. Unsaturated fatty acids with low melting points mobilize faster at low temperatures providing seeds with sufficient energy for germination.MethodologyTo investigate the effects of fatty acid unsaturation on the ability of cotton seeds to germinate under cold conditions, four recombinant inbred lines (RILs) of cotton with unique fatty acid profiles were evaluated using a set of developmental and biochemical assays at 12°C (critically low temperature), 15°C (cardinal minimum temperature) and 30°C (optimum temperature). Furthermore, whole seed lipidome profiling using liquid chromatography with mass spectrometry was done to compare the lipid compositional changes at 12°C and 30°C after imbibing cotton seeds of all the six genotypes for 0 hours, 3 hours and 6 hours.Results and discussionThe RILs with higher unsaturation/saturation ratios registered robust germination performance, lower solute leakage, and optimum water uptake rates under cold stress. Imbibition at 30°C for 8 hours before cold exposure significantly improved the germination of cold sensitive genotypes, indicating that the first few hours of water uptake are critical for cold stress. Whole seed lipidome profiling of all the genotypes specifically associated cold germination ability with higher unsaturation levels of phospholipids during early imbibition. The presence of cis double bonds in phospholipids creates kinks that maintain the fluidity of cell membranes under low temperature. Membrane flexibility under cold conditions is essential for facilitating key germination events including membrane organization and respiration. The current results highlight the importance of fatty acid composition in cold germination ability of upland cotton.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3