Dual-branch collaborative learning network for crop disease identification

Author:

Zhang Weidong,Sun Xuewei,Zhou Ling,Xie Xiwang,Zhao Wenyi,Liang Zheng,Zhuang Peixian

Abstract

Crop diseases seriously affect the quality, yield, and food security of crops. redBesides, traditional manual monitoring methods can no longer meet intelligent agriculture’s efficiency and accuracy requirements. Recently, deep learning methods have been rapidly developed in computer vision. To cope with these issues, we propose a dual-branch collaborative learning network for crop disease identification, called DBCLNet. Concretely, we propose a dual-branch collaborative module using convolutional kernels of different scales to extract global and local features of images, which can effectively utilize both global and local features. Meanwhile, we embed a channel attention mechanism in each branch module to refine the global and local features. Whereafter, we cascade multiple dual-branch collaborative modules to design a feature cascade module, which further learns features at more abstract levels via the multi-layer cascade design strategy. Extensive experiments on the Plant Village dataset demonstrated the best classification performance of our DBCLNet method compared to the state-of-the-art methods for the identification of 38 categories of crop diseases. Besides, the Accuracy, Precision, Recall, and F-score of our DBCLNet for the identification of 38 categories of crop diseases are 99.89%, 99.97%, 99.67%, and 99.79%, respectively. 811

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3