A High-Precision Identification Method for Maize Leaf Diseases and Pests Based on LFMNet under Complex Backgrounds

Author:

Liu Jintao1,He Chaoying1,Jiang Yichu2,Wang Mingfang1,Ye Ziqing1,He Mingfang1

Affiliation:

1. College of Electronic Information & Physics, Central South University of Forestry and Technology, Changsha 410004, China

2. Hunan Polytechnic College of Environment and Biology, Hengyang 421005, China

Abstract

Maize, as one of the most important crops in the world, faces severe challenges from various diseases and pests. The timely and accurate identification of maize leaf diseases and pests is of great significance for ensuring agricultural production. Currently, the identification of maize leaf diseases and pests faces two key challenges: (1) In the actual process of identifying leaf diseases and pests, complex backgrounds can interfere with the identification effect. (2) The subtle features of diseases and pests are difficult to accurately extract. To address these challenges, this study proposes a maize leaf disease and pest identification model called LFMNet. Firstly, the localized multi-scale inverted residual convolutional block (LMSB) is proposed to perform preliminary down-sampling on the image, preserving important feature information for the subsequent extraction of fine disease and pest features in the model structure. Then, the feature localization bottleneck (FLB) is proposed to improve the model’s ability to focus on and locate disease and pest characteristics and to reduce interference from complex backgrounds. Subsequently, the multi-hop local-feature fusion architecture (MLFFA) is proposed, which effectively addresses the problem of extracting subtle features by enhancing the extraction and fusion of global and local disease and pest features in images. After training and testing on a dataset containing 19,451 images of maize leaf diseases and pests, the LFMNet model demonstrated excellent performance, with an average identification accuracy of 95.68%, a precision of 95.91%, a recall of 95.78%, and an F1 score of 95.83%. Compared to existing models, it exhibits significant advantages, offering robust technical support for the precise identification of maize diseases and pests.

Funder

Hunan Provincial Natural Science Foundation of China

Scientific Research Project of Education Department of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3