Response of physiological characteristics of ecological restoration plants to substrate cement content under exogenous arbuscular mycorrhizal fungal inoculation

Author:

Shu Qian,Xia Dong,Ma Yueyang,Zhang Yang,Luo Ting,Ma Jiaxin,Liu Fang,Yan Shuxing,Liu Daxiang

Abstract

IntroductionIn order to solve the inhibition of alkaline environment on plants growth at the initial stage of Eco-restoration of vegetation concrete technology, introducing AMF into vegetation concrete substrate is an effective solution. MethodsIn this study, Glomus mosseae (GM), Glomus intraradices (GI) and a mixture of two AMF (MI) were used as exogenous inoculation agents. Festuca elata and Cassia glauca were selected as host plants to explore the relationship between the physiological characteristics of plants and the content of substrate cement under exogenous inoculation of AMF.ResultsThe experiment showed that, for festuca elata, the maximum mycorrhizal infection rates of inoculation with GM, MI were when the cement contents ranged 5–8% and that of GI inoculation was with the cement contents ranging 5–10%. Adversely, for Cassia glauca, substrate cement content had little effect on the root system with the exogenous inoculation of AMF. Compared with CK, the effects of AMF inoculation on the physiological characteristics of the two plants were different. When the cement content was the highest (10% and 8% respectively), AMF could significantly increase(p<0.05) the intercellular CO2 concentration (Ci) of Festuca elata. Moreover, for both plants, single inoculation was more effective than mixed inoculation. When the cement content was relatively low, the physiological characteristics of Cassia glauca were promoted more obviously by the inoculation of GI. At higher cement content level, inoculation of GM had a better effect on the physiological characteristics of the two plants. ConclusionThe results suggest that single inoculation of GM should be selected to promote the growth of Festuca elata and Cassia glauca in higher alkaline environment.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3