Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration

Author:

Kang Roujia1,Li Mingyi2,Guo Shiwei2,Xia Dong3ORCID,Liu Liming2,Dong Wenhao4,Xu Wennian2,Lv Yucai1

Affiliation:

1. College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China

2. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang 443002, China

3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China

4. Hubei Runzhi Ecological Technology Co., Ltd., Yichang 443002, China

Abstract

In order to investigate the effects of brassinolide (BR) on the ecological stoichiometric characteristics and internal stability of plants in slope ecological protection under different drought conditions, the biomass, proline content, nutrient content, and internal stability of tall fescue (Festuca arundinacea) in three stress periods were analyzed by weighing water control method, with three drought degrees (75% ± 5%), mild drought (55% ± 5%) and severe drought (35% ± 5%) and four BR concentrations (0 mg/L, 0.05 mg/L, 0.2 mg/L and 0.5 mg/L). The results showed that drought stress resulted in a decrease in plant biomass and nutrient content, and there were differences in carbon, nitrogen and phosphorus contents and their stoichiometric ratios in different organs. Spraying suitable concentration of BR could alleviate plant nutrient loss and promote nutrient accumulation of the tall fescue. Under normal water spraying conditions 0.2 mg/L, under mild and severe drought conditions with spraying of 0.5 mg/L BR, it is most suitable for the nutrient accumulation in tall fescue. The tall fescue showed high sensitivity to exogenous BR input, and the internal stability of the underground part of the tall fescue increased clearly. BR is propitious to the synthesis of proline and enhances the drought resistance of plants. According to stoichiometric characteristics, BR can improve the nitrogen and phosphorus utilization efficiency of tall fescue to a certain extent, and the results of the nitrogen and phosphorus ratio show that nitrogen is the main factor limiting plant growth in a vegetation concrete ecological restoration system, which can supplement nitrogen to accelerate the process of vegetation restoration. The application of BR can improve the biomass and stress resistance of tall fescue, adjust the nutrient distribution strategy and stoichiometric stability, and alleviate the adverse effects of drought on plants. This study provides new ideas and methods for ecological restoration and vegetation reconstruction in arid areas.

Funder

National Natural Science Foundation of China

Yangtze River Scientific Research Institute, Changjiang Water Resources Commission

Key Laboratory of Geological Hazards on Three Gorges Reservoir Region, Ministry of Education

Hubei Provincial Engineering Research Center for Cement-based Ecological Restoration Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3