Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6

Author:

Hirai Risaku,Wang Shumin,Demura Taku,Ohtani Misato

Abstract

Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7–VP16–GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4–MYB75–KNAT7–BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4–MYB75–KNAT7–BLH6 complex.

Funder

RIKEN

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Exploratory Research for Advanced Technology

Naito Foundation

Asahi Glass Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3