The evolution of in vitro tracheary element systems from annual to perennial plant species

Author:

Keret RafaelORCID,Hills PaulORCID,Drew DavidORCID

Abstract

AbstractTracheary elements (TEs), including vessels and tracheids, occur as a product of xylogenesis and are highly adapted for the transportation of water and solutes. Xylogenesis or wood formation encompasses various stages of cellular development, which requires stringent temporal and spatial regulation. To further complicate matters, TEs are polymorphous and associated with other complex tissues. These complexities have necessitated the development of in vitro culture systems that are capable of synchronously inducing TEs on demand. In this review, we cover the challenges associated with inducing TEs in vitro and how this has been overcome using mesophyll and callus culture systems in herbaceous plants, yielding transdifferentiation efficiencies of up to 76% and 90%, respectively. We postulate that when equipped with such information, a great opportunity exists to optimise these culture systems in commercially valuable woody genera that currently display lower efficiencies in the range of 15.8–65%. Although both the mesophyll and callus induction cultures have proven essential for uncovering the fundamental processes associated with secondary growth, the mesophyll-based systems have recently become much less prominent (2.8x) in the literature compared to the callus-based systems. This is largely due to ease of application of the callus system to other plant species, paving the way for applications ranging from fundamental research in economically valuable woody genera to the 3D-printing of biomaterial products in vitro.

Funder

Hans Merensky Foundation

Stellenbosch University

Publisher

Springer Science and Business Media LLC

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transition dynamics in plastid interconversion in land plants;Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology;2024-07-11

2. Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis;Tree Physiology;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3