Identification and expression analysis of pineapple sugar transporters reveal their role in the development and environmental response

Author:

Fakher Beenish,Jakada Bello Hassan,Greaves Joseph G.,Wang Lulu,Niu Xiaoping,Cheng Yan,Zheng Ping,Aslam Mohammad,Qin Yuan,Wang Xiaomei

Abstract

In plants, sugars are required for several essential functions, including growth, storage, signaling, defense and reproduction. Sugar transporters carry out the controlled movement of sugars from source (leaves) to sink (fruits and roots) tissues and determine the overall development of the plant. Various types of sugar transporter families have been described in plants, including sucrose transporters (SUC/SUT), monosaccharide transporter (MST) and SWEET (from Sugar Will Eventually be Exported Transporters). However, the information about pineapple sugar transporters is minimal. This study systematically identified and classified 45 MST and 4 SUC/SUT genes in the pineapple genome. We found that the expression patterns of sugar transporter genes have a spatiotemporal expression in reproductive and vegetative tissues indicating their pivotal role in reproductive growth and development. Besides, different families of sugar transporters have a diel expression pattern in photosynthetic and non-photosynthetic tissues displaying circadian rhythm associated participation of sugar transporters in the CAM pathway. Moreover, regulation of the stress-related sugar transporters during cold stress indicates their contribution to cold tolerance in pineapple. Heterologous expression (yeast complementation assays) of sugar transporters in a mutant yeast strain suggested that SUT1/2 have the ability to transport sucrose, and STP13, STP26, pGlcT-L2 and TMT4 are able to transport glucose, whereas SWEET11/13 transport both sucrose and fructose. The information provided here would help researchers further explore the underlying molecular mechanism involved in the sugar metabolism of pineapple.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference88 articles.

1. The vitis vinifera sugar transporter gene family: Phylogenetic overview and macroarray expression profiling;Afoufa-Bastien;BMC Plant Biol.,2010

2. Structure and regulation of SWEET transporters in plants: An update;Anjali;Plant Physiol. Biochem.,2020

3. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant ananas comosus (pineapple);Antony;J. Exp. Bot.,2008

4. A CBL-interacting protein kinase, AcCIPK18, from ananas comosus regulates tolerance to salt, drought, heat stress and sclerotinia sclerotiorum infection in arabidopsis;Aslam,2022

5. Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response;Aslam;Biomolecules,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3