Author:
Aslam ,Fakher ,Jakada ,Zhao ,Cao ,Cheng ,Qin
Abstract
Ca2+ serves as a ubiquitous second messenger regulating several aspects of plant growth and development. A group of unique calcium sensor proteins, calcineurin B-like (CBL), interact with CBL-interacting protein kinases (CIPKs) to decode the Ca2+ signature inside the cell. Although CBL-CIPK signaling toolkit has been shown to play significant roles in the responses to numerous stresses in different plants, the information about pineapple CBL-CIPK remains obscure. In the present study, a total of eight AcCBL and 21 AcCIPK genes were identified genome-wide in pineapple. The identified genes were renamed on the basis of gene ID in ascending order and phylogenetic analysis divided into five groups. Transcriptomic data analysis showed that AcCBL and AcCIPK genes were expressed differentially in different tissues. Further, the expression analysis of AcCBL1 in different tissues showed significant changes under various abiotic stimuli. Additionally, the ectopic expression of AcCBL1 in Arabidopsis resulted in enhanced tolerance to salinity, osmotic, and fungal stress. The present study revealed the crucial contribution of the CBL-CIPK gene in various biological and physiological processes in pineapple.
Funder
National Natural Science Foundation of China
Newton Advanced Fellowship
Subject
Molecular Biology,Biochemistry
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献